本篇目录:
- 1、逆矩阵是什么?
- 2、逆矩阵有什么性质?
- 3、什么是逆矩阵,有什么意义?
逆矩阵是什么?
设A是数域上的一个n阶矩阵,若在相同数域上存在另一个n阶矩阵B,使得: AB=BA=E ,则我们称B是A的逆矩阵,而A则被称为可逆矩阵。注:E为单位矩阵。性质定理:可逆矩阵一定是方阵。
逆矩阵的唯一性:若矩阵A是可逆的,则A的逆矩阵是唯一的。
不是方阵的矩阵没有逆矩阵的概念,逆矩阵只对方阵定义的。逆矩阵的定义:假设A是数域上的一个n阶矩阵,若在相同数域上存在另一个n阶矩阵B,他能够使得AB=BA=E ,则我们称B是A的逆矩阵,而A则被称为可逆矩阵。
若矩阵为方阵且其逆矩阵存在时,矩阵的逆的转置 等于 矩阵的转置的逆。注意;只有方形矩阵才有矩阵的逆,而非方形的叫做“矩阵的伪逆”,此处只论方阵。
逆矩阵有什么性质?
逆矩阵的性质:可逆矩阵是方阵。矩阵A是可逆的,其逆矩阵是唯一的。A的逆矩阵的逆矩阵还是A。可逆矩阵A的转置矩阵AT可逆,并且(AT)-1=(A-1)T 。若矩阵A可逆,则矩阵A满足消去律。
若矩阵为方阵且其逆矩阵存在时,矩阵的逆的转置 等于 矩阵的转置的逆。注意;只有方形矩阵才有矩阵的逆,而非方形的叫做“矩阵的伪逆”,此处只论方阵。
可逆矩阵的性质:若a为可逆矩阵,则a的逆矩阵是唯一的。当且仅当 A等价于E,即存在可逆阵P、Q使得PAQ=E。由于“矩阵相乘,秩变小或不变”,则要求A也必须是满秩的,A的秩必须=K才行。
矩阵的-1次方是指该矩阵的逆矩阵,该矩阵成为可逆矩阵。矩阵与矩阵的-1次方的乘积为单位矩阵。
逆矩阵具有以下性质:1 矩阵A可逆的充要条件是A的行列式不等于0。2 可逆矩阵一定是方阵。3 如果矩阵A是可逆的,A的逆矩阵是唯一的。4 可逆矩阵也被称为非奇异矩阵、满秩矩阵。5 两个可逆矩阵的乘积依然可逆。
(1)矩阵转置的基本性质:(A±B)T=AT±BT;(A×B)T= BT×AT;(AT)T=A;(KA)T=KA。(2)逆矩阵的基本性质:可逆矩阵一定是方阵。如果矩阵A是可逆的,其逆矩阵是唯一的。A的逆矩阵的逆矩阵还是A。
什么是逆矩阵,有什么意义?
逆矩阵等于自身的矩阵,即满足A=E的矩阵,这样的矩阵称为对合矩阵。几个明显的性质有:1,(E+A)(E-A)=0成立的充要条件为A为对合矩阵。2,若A,B都为对合矩阵,则AB为对合矩阵的充要条件为AB=BA。
设A是数域上的一个n阶矩阵,若在相同数域上存在另一个n阶矩阵B,使得: AB=BA=E ,则我们称B是A的逆矩阵,而A则被称为可逆矩阵。
即矩阵A的行和列对应互换。(2)逆矩阵的含义:一个n阶方阵A称为可逆的,或非奇异的,如果存在一个n阶方阵B,使得AB=BA=E,则称B是A的一个逆矩阵。A的逆矩阵记作A-1。
到此,以上就是小编对于逆矩阵的功能和用法总结的问题就介绍到这了,希望介绍的几点解答对大家有用,有任何问题和不懂的,欢迎各位老师在评论区讨论,给我留言。